Negative magnetization in the medium-entropy Pr1/3Dy1/3Ho1/3CrO3 and PrCrO3 ceramics: comparative crystal structure, optic, dielectric and magnetic properties

Author:

Durán A.ORCID,Reguera E.,Mendivil L. F.,González M.,Verdin E.

Abstract

AbstractIn recent years, raising investigation activity in entropy-stabilized ceramic oxides has been driven by their innovative approach to designing a thermodynamically stable multi-element system, which provides a new focus on investigating complex functional materials. Especially, complex and singular physical properties of orthochromite have generated rising research in recent years. Of this family, the PrCrO3, DyCrO3, and HoCrO3systems are particularly interesting since, below Néel temperature (TN), they present negative magnetization in the ZFC mode. Here, we have employed this approach and designed a medium-entropy (MECs) Pr1/3Dy1/3Ho1/3CrO3(PDH) ceramic to study not only whether the magnetic characteristics prevail, but also the state of optical and dielectric properties of this new compound. In addition, the physical properties studied were compared with the single PrCrO3(PC) compound. These compounds were synthesized through a facile combustion synthesis route. The X-ray diffraction analysis, energy-dispersive X-ray spectroscopy (EDS), and surface scanning elemental mapping reveal that a single phase is stabilized and equimolar cations are homogeneously distributed in the PDH-MECs. We found that the disorder of cations in the A-site of the structure has no significant effect on the optical transition in the visible electromagnetic region and dielectric properties with respect to the simple compound PC. In contrast, the magnetic properties are strongly affected in the MECs-PDH compound. We found that the TNis tuned through the O–Cr–O angles and below the antiferromagnetic transition. The results suggest that the negative magnetization in the ZFC mode is an intrinsic feature in these compounds since the negative ZFC susceptibility below TNpredominates despite the cationic disorder. Furthermore, their negative magnetic mechanism in both the MECs-PDH and PC compounds are discussed in terms of the Γ2(FxCyGz) magnetic configuration.Graphical abstract

Funder

DGAPA-PAPIIT

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3