A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film

Author:

Yi YingORCID,Samara Ayman,Wang BoORCID

Abstract

AbstractConventional flexible piezoresistive strain sensors that use conductive particles polymer composites exhibit thick structures with a low sensitivity to external tension. This paper presents a cost-effective method to fabricate ultra-thin and highly sensitive piezoresistive strain sensors. In our fabrication steps, carbon ink that is mainly composed of carbon black particles is solidified with a drying process to form a “paperlike,” flexible conductive film. Without any surface modification techniques, the carbon ink film is directly placed onto liquid-state PDMS and then bonded after the drying process. Following the rapid prototyping, different performance metrics of the fabricated sensors, including piezoresistivity, gauge factor, temperature dependency, elastic modulus, and repeatability are measured. Specifically, sensors fabricated with this method show a significantly improved gauge factor (~26) compared to similar flexible sensors fabricated by more complicated micro-fabrication methods. The proposed method of fabrication and the corresponding ultra-thin (~45 μm) sensor prototype may benefit the design and mass production of future wearable biomedical and healthcare sensors.

Funder

Qatar National Research Fund

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference49 articles.

1. Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312

2. Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

3. Kim H-K, Lee S, Yun K-S (2011) Capacitive tactile sensor array for touch screen application. Sens Actuators A 165:2–7

4. Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114

5. Cheng M-Y, Huang X-H, Ma C-W, Yang Y-J (2009) A flexible capacitive tactile sensing array with floating electrodes. J Micromech Microeng 19:115001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3