Production of low-density and high-strength paperboards by controlled micro-nano fibrillation of fibers

Author:

Ahadian HamidrezaORCID,Ceccherini Sara,Sharifi Zamani Elaheh,Phiri Josphat,Maloney Thaddeus

Abstract

AbstractOne of the critical challenges in the fiber-based packaging industry is to produce low-density paperboards with high functionality and attractive cost structure. In this study, we examine how control of the hierarchical fiber swelling can be used to enhance bonding and generate a low-density fiber network with excellent strength properties. Here, the osmotic pressure inside the cell wall is increased by adding phosphate groups with a deep eutectic solvent (DES) functional drying method. Together with mechanical refining, this process causes the fibril aggregates to split and swell up massively. This effect was measured by a novel thermoporosimetry analysis method. The treated fibers have enhanced external fibrillation, fibrillar fines and bonding potential. When mixed with relatively stiff, unrefined fibers, a well-bonded sheet with lower density than a conventionally refined reference sheet was achieved. The results suggest that pulp fibers can be “nanoengineered” to enhance performance without the complications of producing and adding nanocellulose.

Funder

Jane ja Aatos Erkon Säätiö

Technical Research Centre of Finland

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3