Abstract
Abstract
Alloys processed by laser powder-bed fusion show distinct microstructures composed of dislocation cells, dispersed nanoparticles, and columnar grains. Upon post-build annealing, such alloys show sluggish recrystallization kinetics compared to the conventionally processed counterpart. To understand this behavior, AISI 316L stainless steel samples were constructed using the island scan strategy. Rhodonite-like (MnSiO3) nanoparticles and dislocation cells are found within weakly-textured grains in the as-built condition. Upon isothermal annealing at 1150 °C (up to 2880 min), the nucleation of recrystallization occurs along the center of the melt pool, where nuclei sites, high stored elastic energy, and local large misorientation are found in the as-built condition. The low value of the Avrami coefficient (n = 1.16) can be explained based on the non-random distribution of nucleation sites. The local interaction of the recrystallization front with nanoparticles speeds up their coarsening causing the decrease of the Zener-Smith pinning force. This allows the progression of recrystallization in LPBF alloys, although sluggish. These results allow us to understand the progress of recrystallization in LPBF 316L stainless steel, shedding light on the nucleation mechanisms and on the competition between driving and dragging pressures in non-conventional microstructures. They also help to understand the most relevant microstructural aspects applicable for tuning microstructures and designing new LPBF alloys.
Graphical abstract
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Alexander von Humboldt-Stiftung
Max-Planck-Institut für Eisenforschung GmbH
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献