On the synthesis and formability of high-entropy oxides

Author:

Kandage Manjula M.ORCID,Marszewski MichalORCID

Abstract

AbstractThis paper reports on a straightforward and general solution-based synthesis method for high-entropy oxides (HEOs) of different types and compositions. The flexibility and simplicity of this method are hoped to drive development of new HEOs and study of their properties and applications. Thirteen HEOs with rock salt, fluorite, spinel, and perovskite structures were synthesized using a Pechini-type synthesis at temperatures significantly lower than those necessary in solid-state synthesis (400–900 °C). Metal nitrates, nitrites, chlorides, and even water-sensitive alkoxides were used as the metal precursors with the present method. The HEOs were characterized using powder X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Relaxation of cation size and charge rules and formability of HEOs are also discussed. The present results indicate that the classical criteria for material stability do not readily translate to high-entropy systems. For example, the well-known criteria for Goldschmidt and octahedral tolerance factors established for ordinary perovskites do not seem to describe formability of perovskite HEOs well. The discussed relaxation of cation size and charge rules will contribute to the understanding of HEO systems and development of new HEO phases.

Funder

University of Toledo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3