The synthesis and nanostructure investigation of noble metal-based nanocomposite materials

Author:

Zienkiewicz-Strzałka MałgorzataORCID,Deryło-Marczewska Anna,Pikus Stanisław

Abstract

AbstractThe presented work follows the theme of applied chemistry toward nanomaterials and multiphase functional systems of practical importance. Structural studies of nanocomposite materials are important due to the correlation between physicochemical/structural properties and their application potential. In this work, we report the fabrication and structural characterization of nanocomposite materials constituting noble metal (plasmonic) nanoparticles (AgNP and AuNP) dispersed on selected types of nanostructured solid hosts (nonporous silica, microporous activated carbon, chitosan biopolymer, and ordered mesoporous silica). The ability to maintain a dispersed state of colloidal precursors throughout their deposition on solid hosts was assessed. The influence of the carrier role in the formation and stabilization of nanometallic phases was evaluated taking into account the physicochemical and textural properties of the support surfaces. The size and shape of nanoobjects, clustering effects, interfacial properties, and stability of the immobilized nanophase were implemented by analyzing relevant parameters of SAXS analysis. The dimensional characteristic of the scatterers was evaluated by volume-weighted particle size distribution Dv(R). The detailed overall shape and maximal particle dimension were described by the analysis of pair distance distribution functions (PDDFs). The radius of gyration (Rg) from PDDF and Guinier approximation was calculated for illustrating the dimension of scattered heterogeneities in the investigated solids. The asymptotic behavior of a scattering curve and Porod theory were applied for determining the diffusion and quality of the interfacial surfaces. The size and morphology of nanoparticles in colloidal precursor solutions have been defined as spherical and bimodal in size (~ 6 nm and 20 nm). It was observed that the spherical shape and dispersed state of nanoparticles were achieved for all systems after deposition. However, the morphology of their final form was conditioned by the solid matrices. The particle properties from SAXS were correlated with properties determined by TEM and low-temperature nitrogen sorption analysis. Obtained results suggest good compatibility and correctness of SAXS data reading of nanocomposite systems and can be successfully applied for quick, nondestructive, and effective evaluation of structural properties of complex systems. Graphical abstract

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3