Hygrothermal deterioration in carbon/epoxy and glass/epoxy composite laminates aged in marine-based environment (degradation mechanism, mechanical and physicochemical properties)

Author:

Ghabezi PouyanORCID,Harrison Noel M.

Abstract

AbstractOne of the major challenges in off-shore tidal and wave energy devices is the ageing of these structures in the hostile marine environment, which limits their operating life. In this research, mechanical properties of aged glass/epoxy and carbon/epoxy composite specimens including tensile strength, Young’s modulus, flexural strength, and shear strength, following immersion in a representative accelerated marine degradation environment (artificial seawater, with 3.5% salinity at room temperature and 60 °C) have been investigated. The microstructure and physicochemical characterization of the aged samples were assessed via microscopic imaging, micro-CT scanning and differential scanning calorimetry. The degradation phenomenon was apparent in the change of mechanical properties and microstructure of composite laminates (micro-cracks and debonding between matrix and fibre). Generally, the ageing process had a more severe effect on tensile and shear strengths of glass/epoxy samples than those of carbon/epoxy specimens. Reversely, the results of bending tests of carbon/epoxy composites showed more drop-in flexural properties than glass/epoxy samples. The results revealed that degradation mechanisms continue even after reaching the saturation point in composite materials. The achievements of this research present a good understanding of the effect of degradation of composite materials in salt water to deal with their application in real service environment.

Funder

Enterprise Ireland

National University Ireland, Galway

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3