Quantifying light energy from 450 nm, 650 nm, 810 nm, and 980 nm wavelength lasers delivered through dental hard tissue

Author:

Chan Alex SimonORCID,Chan Adam G.,Dawes Judith M.,Chan Andrew Jonathan,Chan Ambrose

Abstract

Abstract Purpose The energy available to treat the dental pulp after transmittance through overlying structures is clinically important for determining photobiological effects. This ex vivo study aimed to quantify laser energy delivery though the dental crown to the pulp from an initial energy of 5 J using four common laser wavelengths (λ = 450, 650, 810, and 980 nm). Material and methods A total of 30 extracted healthy human teeth (anterior n = 10; premolar n = 10; molar n = 10) were longitudinally sectioned (Project Number: 2021/421, University of Sydney, NSW, Australia). Each sample was methodically exposed in random order to the four wavelengths. Each wavelength was operated at the same power (0.50 W) for 10 s to deliver 5.0 J with a total energy delivery of 10 J/cm2. Laser light was delivered with an 8-mm-diameter fiber bundle probe directed perpendicularly to the buccal cervical-third of the crown. The transmitted energy was measured twice and averaged using a periodically pre-calibrated power meter in blinded conditions. Data were analyzed using a general linear model with logarithmic transformation. Results Wavelength and tooth thickness were significant predictors of optical transmittance (P < 0.05) while tooth type was significant only for the 450 nm wavelength. The average attenuation coefficients (µ) were 2.55, 2.45, 1.87, and 5.42 cm−1 (± 10%) for the 980, 810, 650, and 450 nm groups, respectively. Conclusion Clinicians should recognize that significant attenuation occurs during laser energy delivery to the pulp, influenced by the wavelength, thickness, and tooth type. Our findings support the potential for laser energy delivery to the pulp for photobiomodulation applications.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3