On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth

Author:

Antonelli Gioacchino,Bruè Elia,Fogagnolo Mattia,Pozzetta Marco

Abstract

AbstractIn this paper we provide new existence results for isoperimetric sets of large volume in Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. We find sufficient conditions for their existence in terms of the geometry at infinity of the manifold. As a byproduct we show that isoperimetric sets of big volume always exist on manifolds with nonnegative sectional curvature and Euclidean volume growth. Our method combines an asymptotic mass decomposition result for minimizing sequences, a sharp isoperimetric inequality on nonsmooth spaces, and the concavity property of the isoperimetric profile. The latter is new in the generality of noncollapsed manifolds with Ricci curvature bounded below.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference83 articles.

1. Agostiniani, V., Fogagnolo, M., Mazzieri, L.: Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. Invent. Math. 222(3), 1033–1101 (2020)

2. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. In: vol. 10. 2-3. Calculus of variations, nonsmooth analysis and related topics. 111-128 (2002)

3. Ambrosio, L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Proceedings of the International Congress of Mathematicians-Rio de Janeiro . Vol. I. Plenary lectures, 301-340 (2018)

4. Ambrosio, L., Brué, E., Semola, D.: Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces. Geom. Funct. Anal. 29(4), 949–1001 (2019)

5. Ambrosio, L., Carlotto, A., Massaccesi, A.: Lectures on elliptic partial differential equations. Vol. 18. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, , x+227 (2018)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the geometry at infinity of manifolds with linear volume growth and nonnegative Ricci curvature;Transactions of the American Mathematical Society;2024-09-03

2. Nonnegative Ricci curvature and minimal graphs with linear growth;Analysis & PDE;2024-08-21

3. On Splitting Complete Manifolds via Infinity Harmonic Functions;International Mathematics Research Notices;2024-08-14

4. The isoperimetric problem in Randers Poincaré disc;International Journal of Geometric Methods in Modern Physics;2024-07-25

5. Nonexistence of isoperimetric sets in spaces of positive curvature;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3