Abstract
AbstractWe develop a general method to compute the Morse index of branched Willmore spheres and show that the Morse index is equal to the index of certain matrix whose dimension is equal to the number of ends of the dual minimal surface (when the latter exists). As a corollary, we find that for all immersed Willmore spheres $$\vec {\Phi }:S^2\rightarrow \mathbb {R}^3$$
Φ
→
:
S
2
→
R
3
such that $$W(\vec {\Phi })=4\pi n$$
W
(
Φ
→
)
=
4
π
n
, we have $$\mathrm {Ind}_{W}(\vec {\Phi })\le n-1$$
Ind
W
(
Φ
→
)
≤
n
-
1
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference47 articles.
1. Bernard, Y., Rivière, T.: Singularity removability at branch points for Willmore surfaces. Pac. J. Math. 265(2), 257–311 (2013)
2. Bernard, Y., Rivière, T.: Energy quantization for Willmore surfaces and applications. Ann. Math. 180, 87–136 (2014)
3. Bethuel, F., Brezis, H., Hélein, F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Partial Differ. Equ. 1(2), 123–148 (1993)
4. Bethuel, F., Brezis, H.: Hélein Ginzburg–Landau Vortices. Birkhäuser, Frédéric (1994)
5. Blaschke, W.J.E.: Vorlesungen Über Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln, Springer, coll. Grundlehren der mathematischen Wissenschaften (1929)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献