Author:
Dziubański Jacek,Hejna Agnieszka
Abstract
AbstractOn $$\mathbb R^N$$
R
N
equipped with a normalized root system R, a multiplicity function $$k(\alpha ) > 0$$
k
(
α
)
>
0
, and the associated measure $$\begin{aligned} dw(\mathbf{x})=\prod _{\alpha \in R}|\langle \mathbf{x},\alpha \rangle |^{{k(\alpha )}}\, d\mathbf{x}, \end{aligned}$$
d
w
(
x
)
=
∏
α
∈
R
|
⟨
x
,
α
⟩
|
k
(
α
)
d
x
,
let $$h_t(\mathbf{x},\mathbf{y})$$
h
t
(
x
,
y
)
denote the heat kernel of the semigroup generated by the Dunkl Laplace operator $$\Delta _k$$
Δ
k
. Let $$d(\mathbf{x},\mathbf{y})=\min _{{g}\in G} \Vert \mathbf{x}-{g}(\mathbf{y})\Vert $$
d
(
x
,
y
)
=
min
g
∈
G
‖
x
-
g
(
y
)
‖
, where G is the reflection group associated with R. We derive the following upper and lower bounds for $$h_t(\mathbf{x},\mathbf{y})$$
h
t
(
x
,
y
)
: for all $$c_l>1/4$$
c
l
>
1
/
4
and $$0<c_u<1/4$$
0
<
c
u
<
1
/
4
there are constants $$C_l,C_u>0$$
C
l
,
C
u
>
0
such that $$\begin{aligned} C_{l}w(B(\mathbf {x},\sqrt{t}))^{-1}e^{-c_{l}\frac{d(\mathbf {x},\mathbf {y})^2}{t}} \Lambda (\mathbf{x},\mathbf{y},t) \le h_t(\mathbf {x},\mathbf {y}) \le C_{u}w(B(\mathbf {x},\sqrt{t}))^{-1}e^{-c_{u}\frac{d(\mathbf {x},\mathbf {y})^2}{t}} \Lambda (\mathbf{x},\mathbf{y},t), \end{aligned}$$
C
l
w
(
B
(
x
,
t
)
)
-
1
e
-
c
l
d
(
x
,
y
)
2
t
Λ
(
x
,
y
,
t
)
≤
h
t
(
x
,
y
)
≤
C
u
w
(
B
(
x
,
t
)
)
-
1
e
-
c
u
d
(
x
,
y
)
2
t
Λ
(
x
,
y
,
t
)
,
where $$\Lambda (\mathbf{x},\mathbf{y},t)$$
Λ
(
x
,
y
,
t
)
can be expressed by means of some rational functions of $$\Vert \mathbf{x}-{g}(\mathbf{y})\Vert /\sqrt{t}$$
‖
x
-
g
(
y
)
‖
/
t
. An exact formula for $$\Lambda (\mathbf{x},\mathbf{y},t)$$
Λ
(
x
,
y
,
t
)
is provided.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献