On the constancy theorem for anisotropic energies through differential inclusions

Author:

Hirsch Jonas,Tione RiccardoORCID

Abstract

AbstractIn this paper we study stationary graphs for functionals of geometric nature defined on currents or varifolds. The point of view we adopt is the one of differential inclusions, introduced in this context in the recent papers (De Lellis et al. in Geometric measure theory and differential inclusions, 2019. arXiv:1910.00335; Tione in Minimal graphs and differential inclusions. Commun Part Differ Equ 7:1–33, 2021). In particular, given a polyconvex integrand f, we define a set of matrices $$C_f$$ C f that allows us to rewrite the stationarity condition for a graph with multiplicity as a differential inclusion. Then we prove that if f is assumed to be non-negative, then in $$C_f$$ C f there is no $$T'_N$$ T N configuration, thus recovering the main result of De Lellis et al. (Geometric measure theory and differential inclusions, 2019. arXiv:1910.00335) as a corollary. Finally, we show that if the hypothesis of non-negativity is dropped, one can not only find $$T'_N$$ T N configurations in $$C_f$$ C f , but it is also possible to construct via convex integration a very degenerate stationary point with multiplicity.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference26 articles.

1. Allard, W.K.: An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Geometric measure theory and the calculus of variations (1986)

2. Allard, W.K.: On the first variation of a varifold. Ann. Math. Second Series (1972)

3. Chlebik, M., Kirchheim, B.: Rigidity for the four gradient problem. Journal für die reine und angewandte Mathematik (Crelles Journal) 551 (200201), 1-9

4. Dacorogna, B., Maréchal, P.: The role of perspective functions in convexity, polyconvexity, rank-one convexity and separate convexity. J. Convex Anal. 15(2), 271–284 (2008)

5. De Lellis, C., De Philippis, G., Kirchheim, B., Tione, R.: Geometric measure theory and differential inclusions, Accepted Paper: Annales de la Faculté des Sciences de Toulouse, arXiv:1910.00335 (2019)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary regularity for anisotropic minimal Lipschitz graphs;Communications in Partial Differential Equations;2023-12-20

2. Wild solutions to scalar Euler-Lagrange equations;T AM MATH SOC;2023-12-19

3. The anisotropic min‐max theory: Existence of anisotropic minimal and CMC surfaces;Communications on Pure and Applied Mathematics;2023-12

4. Critical Points of Degenerate Polyconvex Energies;SIAM Journal on Mathematical Analysis;2023-07-28

5. The four-state problem and convex integration for linear differential operators;Journal of Functional Analysis;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3