On center of mass and foliations by constant spacetime mean curvature surfaces for isolated systems in General Relativity

Author:

Cederbaum CarlaORCID,Sakovich AnnaORCID

Abstract

AbstractWe propose a new foliation of asymptotically Euclidean initial data sets by 2-spheres of constant spacetime mean curvature (STCMC). The leaves of the foliation have the STCMC-property regardless of the initial data set in which the foliation is constructed which asserts that there is a plethora of STCMC 2-spheres in a neighborhood of spatial infinity of any asymptotically flat spacetime. The STCMC-foliation can be understood as a equivariant relativistic generalization of the CMC-foliation suggested by Huisken and Yau (Invent Math 124:281–311, 1996). We show that a unique STCMC-foliation exists near infinity of any asymptotically Euclidean initial data set with non-vanishing energy which allows for the definition of a new notion of total center of mass for isolated systems. This STCMC-center of mass transforms equivariantly under the asymptotic Poincaré group of the ambient spacetime and in particular evolves under the Einstein evolution equations like a point particle in Special Relativity. The new definition also remedies subtle deficiencies in the CMC-approach to defining the total center of mass suggested by Huisken and Yau (Invent Math 124:281–311, 1996) which were described by Cederbaum and Nerz (Ann Henri Poincaré 16:1609–1631, 2015).

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mass, center of mass and isoperimetry in asymptotically flat 3-manifolds;Calculus of Variations and Partial Differential Equations;2023-07-12

2. Local space time constant mean curvature and constant expansion foliations;Journal of Geometry and Physics;2023-06

3. Ricci flow on surfaces along the standard lightcone in the $$3+1$$-Minkowski spacetime;Calculus of Variations and Partial Differential Equations;2023-01-27

4. Coordinates are Messy—Not Only in General Relativity;Gravity, Cosmology, and Astrophysics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3