Author:
Musso Monica,Rocci Serena,Vaira Giusi
Abstract
AbstractWe show that the classical Brezis–Nirenberg problem $$\begin{aligned} \Delta u + |u|^{4 \over N-2} u + \varepsilon u = 0,\quad {\text{ in }} \quad \Omega , \quad u= 0, \quad {\text{ on }} \quad \partial \Omega \end{aligned}$$
Δ
u
+
|
u
|
4
N
-
2
u
+
ε
u
=
0
,
in
Ω
,
u
=
0
,
on
∂
Ω
admits nodal solutions clustering around a point on the boundary of $$\Omega $$
Ω
as $$\varepsilon \rightarrow 0$$
ε
→
0
, for smooth bounded domains $$\Omega \subset {\mathbb {R}^N}$$
Ω
⊂
R
N
in dimensions $$N\ge 7$$
N
≥
7
.
Funder
Università degli Studi di Bari Aldo Moro
Publisher
Springer Science and Business Media LLC