Convex domains of Finsler and Riemannian manifolds
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Link
http://link.springer.com/content/pdf/10.1007/s00526-010-0343-1.pdf
Reference31 articles.
1. Bangert V.: Über die Approximation von lokal konvexen Mengen. Manuscr. Math. 25, 397–420 (1978)
2. Bangert V.: Konvexe Mengen in Riemannschen Mannigfaltigkeiten. Math. Z. 162, 263–286 (1978)
3. Bao D., Chern S.S., Shen Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics. Springer, New York (2000)
4. Bartolo R., Germinario A., Sánchez M.: Convexity of domains of Riemannian manifolds. Ann. Glob. Anal. Geom. 21, 63–83 (2002)
5. Benci V.: Normal modes of a Lagrangian system constrained in a potential well. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 379–400 (1984)
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wind Finslerian Structures: From Zermelo’s Navigation to the Causality of Spacetimes;Memoirs of the American Mathematical Society;2024-08
2. Multiple connecting geodesics of a Randers-Kropina metric via homotopy theory for solutions of an affine control system;Topological Methods in Nonlinear Analysis;2023-02-26
3. An Account on Links Between Finsler and Lorentz Geometries for Riemannian Geometers;New Trends in Geometric Analysis;2023
4. Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary;Inverse Problems and Imaging;2022
5. Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics;Advances in Nonlinear Analysis;2022-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3