Regularity theory and Green’s function for elliptic equations with lower order terms in unbounded domains

Author:

Mourgoglou MihalisORCID

Abstract

AbstractWe consider elliptic operators in divergence form with lower order terms of the form $$Lu = -{{\textrm{div}}}(A \cdot \nabla u + b u ) - c \cdot \nabla u - du$$ L u = - div ( A · u + b u ) - c · u - d u , in an open set $$\Omega \subset \mathbb {R}^n$$ Ω R n , $$n \ge 3$$ n 3 , with possibly infinite Lebesgue measure. We assume that the $$n \times n$$ n × n matrix A is uniformly elliptic with real, merely bounded and possibly non-symmetric coefficients, and either $$b, c \in L^{n,\infty }_{\text {loc}}({\Omega })$$ b , c L loc n , ( Ω ) and $$d \in L_{\text {loc}}^{\frac{n}{2}, \infty }(\Omega )$$ d L loc n 2 , ( Ω ) , or $$|b|^2, |c|^2, |d| \in \mathcal {K}_{\text {loc}}(\Omega )$$ | b | 2 , | c | 2 , | d | K loc ( Ω ) , where $$\mathcal {K}_{\text {loc}}(\Omega )$$ K loc ( Ω ) stands for the local Stummel–Kato class. Let $${\mathcal {K}_{\text {Dini}}}(\Omega )$$ K Dini ( Ω ) be a variant of $$\mathcal {K}(\Omega )$$ K ( Ω ) satisfying a Carleson-Dini-type condition. We develop a De Giorgi/Nash/Moser theory for solutions of $$Lu = f - {{\textrm{div}}}g$$ L u = f - div g , where f and $$|g|^2 \in {\mathcal {K}_{\text {Dini}}}(\Omega )$$ | g | 2 K Dini ( Ω ) if, for $$q \in [n, \infty )$$ q [ n , ) , any of the following assumptions holds: (i) $$|b|^2, |d| \in {\mathcal {K}_{\text {Dini}}}(\Omega )$$ | b | 2 , | d | K Dini ( Ω ) and either $$c \in L^{n,q}_{\text {loc}}(\Omega )$$ c L loc n , q ( Ω ) or $$|c|^2 \in \mathcal {K}_{\text {loc}}(\Omega )$$ | c | 2 K loc ( Ω ) ; (ii) $${{\textrm{div}}}b +d \le 0$$ div b + d 0 and either $$b+c \in L^{n,q}_{\text {loc}}(\Omega )$$ b + c L loc n , q ( Ω ) or $$|b+c|^2 \in \mathcal {K}_{\text {loc}}(\Omega )$$ | b + c | 2 K loc ( Ω ) ; (iii) $$-{{\textrm{div}}}c + d \le 0$$ - div c + d 0 and $$|b+c|^2 \in {\mathcal {K}_{\text {Dini}}}(\Omega )$$ | b + c | 2 K Dini ( Ω ) . We also prove a Wiener-type criterion for boundary regularity. Assuming global conditions on the coefficients, we show that the variational Dirichlet problem is well-posed and, assuming $$-{{\textrm{div}}}c +d \le 0$$ - div c + d 0 , we construct the Green’s function associated with L satisfying quantitative estimates. Under the additional hypothesis $$|b+c|^2 \in \mathcal {K}'(\Omega )$$ | b + c | 2 K ( Ω ) , we show that it satisfies global pointwise bounds and also construct the Green’s function associated with the formal adjoint operator of L. An important feature of our results is that all the estimates are scale invariant and independent of $$\Omega $$ Ω , while we do not assume smallness of the norms of the coefficients or coercivity of the associated bilinear form.

Funder

Ministerio de Ciencia, Innovación y Universidades

Eusko Jaurlaritza

Ikerbasque, Basque Foundation for Science

Universidad del País Vasco

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference40 articles.

1. Pure and Applied Mathematics;C Bennett,1988

2. Bottaro, G., Marina, M.T.: Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Bollettino dell Unione Matematica Italiana (4) 8, 46–56 (1976)

3. Chiarenza, F., Fabes, E., Garofalo, N.: Harnack’s inequality for Schrödinger operators and the continuity of solutions. Proc. A.M.S. 98, 415–425 (1986)

4. Costea, S.: Strong A(infinity)-weights and scaling invariant Besov and Sobolev–Lorentz capacities. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-University of Michigan (2006)

5. Costea, S.: Sobolev–Lorentz spaces in the Euclidean setting and counterexamples. Nonlinear Anal. 152, 149–182 (2017)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3