Author:
Kunikawa Keita,Sakurai Yohei
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference45 articles.
1. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham (2016)
2. Andrews, B., Hopper, C.: The Ricci flow in Riemannian geometry. A complete proof of the differentiable $$1/4$$-pinching sphere theorem. Lecture Notes in Mathematics, 2011. Springer, Heidelberg (2011)
3. Bamler, R.H.: Entropy and heat kernel bounds on a Ricci flow background, preprint. arXiv:2008.07093
4. Bamler, R.H.: Compactness theory of the space of Super Ricci flows, preprint. arxiv:2008.09298
5. Chen, Q., Jost, J., Qiu, H.: Existence and Liouville theorems for $$V$$-harmonic maps from complete manifolds. Ann. Global Anal. Geom. 42(4), 565–584 (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献