Abstract
AbstractWe develop a functional analytic approach for the study of nonlocal minimal graphs. Through this, we establish existence and uniqueness results, a priori estimates, comparison principles, rearrangement inequalities, and the equivalence of several notions of minimizers and solutions.
Funder
Università degli Studi di Milano
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference38 articles.
1. Abatangelo, N., Valdinoci, E.: A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35(7–9), 793–815 (2014)
2. Ambrosio, L.: Geometric evolution problems, distance function and viscosity solutions. In: Calculus of Variations and Partial Differential Equations, pp. 5–93, Springer, Berlin (2000)
3. Barrios, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(3), 609–639 (2014)
4. Bucur, C., Lombardini, L.: Asymptotics as $$s \searrow 0$$ of the nonlocal nonparametric Plateau problem with obstacles, in preparation
5. Bucur, C., Lombardini, L., Valdinoci, E.: Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(3), 655–703 (2019)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献