On energy conservation for the hydrostatic Euler equations: an Onsager conjecture

Author:

Boutros Daniel W.ORCID,Markfelder SimonORCID,Titi Edriss S.ORCID

Abstract

AbstractOnsager’s conjecture, which relates the conservation of energy to the regularity of weak solutions of the Euler equations, was completely resolved in recent years. In this work, we pursue an analogue of Onsager’s conjecture in the context of the hydrostatic Euler equations (also known as the inviscid primitive equations of oceanic and atmospheric dynamics). In this case the relevant conserved quantity is the horizontal kinetic energy. We first consider the standard notion of weak solution which is commonly used in the literature. We show that if the horizontal velocity (uv) is sufficiently regular then the horizontal kinetic energy is conserved. Interestingly, the spatial Hölder regularity exponent which is sufficient for energy conservation in the context of the hydrostatic Euler equations is $$\frac{1}{2}$$ 1 2 and hence larger than the corresponding regularity exponent for the Euler equations (which is $$\frac{1}{3}$$ 1 3 ). This is due to the anisotropic regularity of the velocity field: Unlike the Euler equations, in the case of the hydrostatic Euler equations the vertical velocity w is one degree spatially less regular with respect to the horizontal variables, compared to the horizontal velocity (uv). Since the standard notion of weak solution is not able to deal with this anisotropy properly, we introduce two new notions of weak solutions for which the vertical part of the nonlinearity is interpreted as a paraproduct. We finally prove several sufficient conditions for such weak solutions to conserve energy.

Funder

Cambridge Trust

Cantab Capital Institute for Mathematics of Information

Hendrik Muller Fund

Alexander von Humboldt-Stiftung

Simons Foundation

Isaac Newton Institute for Mathematical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3