The Nirenberg problem on high dimensional half spheres: the effect of pinching conditions

Author:

Ahmedou MohamedenORCID,Ben Ayed Mohamed

Abstract

AbstractIn this paper we study the Nirenberg problem on standard half spheres $$(\mathbb {S}^n_+,g), \, n \ge 5$$ ( S + n , g ) , n 5 , which consists of finding conformal metrics of prescribed scalar curvature and zero boundary mean curvature on the boundary. This problem amounts to solve the following boundary value problem involving the critical Sobolev exponent: $$\begin{aligned} (\mathcal {P}) \quad {\left\{ \begin{array}{ll} -\Delta _{g} u \, + \, \frac{n(n-2)}{4} u \, = K \, u^{\frac{n+2}{n-2}},\, u > 0 &{}\quad \text{ in } \mathbb {S}^n_+, \\ \frac{\partial u}{\partial \nu }\, =\, 0 &{}\quad \text{ on } \partial \mathbb {S}^n_+. \end{array}\right. } \end{aligned}$$ ( P ) - Δ g u + n ( n - 2 ) 4 u = K u n + 2 n - 2 , u > 0 in S + n , u ν = 0 on S + n . where $$K \in C^3(\mathbb {S}^n_+)$$ K C 3 ( S + n ) is a positive function. This problem has a variational structure but the related Euler–Lagrange functional $$J_K$$ J K lacks compactness. Indeed it admits critical points at infinity, which are limits of non compact orbits of the (negative) gradient flow. Through the construction of an appropriate pseudogradient in the neighborhood at infinity, we characterize these critical points at infinity, associate to them an index, perform a Morse type reduction of the functional $$J_K$$ J K in their neighborhood and compute their contribution to the difference of topology between the level sets of $$J_K$$ J K , hence extending the full Morse theoretical approach to this non compact variational problem. Such an approach is used to prove, under various pinching conditions, some existence results for $$(\mathcal {P})$$ ( P ) on half spheres of dimension $$n \ge 5$$ n 5 .

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference38 articles.

1. Ahmedou, M., Ben Ayed, M.: Non Simple Blow Ups for the Nirenberg Problem on Half Spheres, preprint (2020). arXiv:2012.11728

2. Ahmedou, M., Ben Ayed, M.: The Nirenberg Problem on Half Spheres: A Bubbling off Analysis. preprint (2021)

3. Aubin, T.: Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296 (1976)

4. Aubin, T., Hebey, E.: Courbure scalaire prescrite (French) [Prescribed scalar curvature]. Bull. Sci. Math. 115(2), 125–131 (1991)

5. Bahri, A.: Critical Points at Infinity in Some Variational Problems, Research Notes in Mathematics, 182. Longman-Pitman, London (1989)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the prescribed fractional Q-curvatures problem on Sn under pinching conditions;Differential Geometry and its Applications;2024-04

2. Multiplicity results for the scalar curvature problem on half spheres;Discrete and Continuous Dynamical Systems;2024

3. The Nirenberg Problem on Half Spheres: A Bubbling-off Analysis;International Mathematics Research Notices;2022-11-23

4. The effect of pinching conditions in prescribing $$ Q $$-curvature on standard spheres;Annals of Global Analysis and Geometry;2022-11-07

5. New existence results for prescribed mean curvature problem on balls under pinching conditions;Differential Geometry and its Applications;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3