An exceptional property of the one-dimensional Bianchi–Egnell inequality

Author:

König TobiasORCID

Abstract

AbstractIn this paper, for $$d \ge 1$$ d 1 and $$s \in (0,\frac{d}{2})$$ s ( 0 , d 2 ) , we study the Bianchi–Egnell quotient $$\begin{aligned} {\mathcal {Q}}(f) = \inf _{f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}} \frac{\Vert (-\Delta )^{s/2} f\Vert _{L^2({\mathbb {R}}^d)}^2 - S_{d,s} \Vert f\Vert _{L^{\frac{2d}{d-2s}}(\mathbb R^d)}^2}{\text {dist}_{\dot{H}^s({\mathbb {R}}^d)}(f, {\mathcal {B}})^2}, \qquad f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}, \end{aligned}$$ Q ( f ) = inf f H ˙ s ( R d ) \ B ( - Δ ) s / 2 f L 2 ( R d ) 2 - S d , s f L 2 d d - 2 s ( R d ) 2 dist H ˙ s ( R d ) ( f , B ) 2 , f H ˙ s ( R d ) \ B , where $$S_{d,s}$$ S d , s is the best Sobolev constant and $${\mathcal {B}}$$ B is the manifold of Sobolev optimizers. By a fine asymptotic analysis, we prove that when $$d = 1$$ d = 1 , there is a neighborhood of $${\mathcal {B}}$$ B on which the quotient $${\mathcal {Q}}(f)$$ Q ( f ) is larger than the lowest value attainable by sequences converging to $${\mathcal {B}}$$ B . This behavior is surprising because it is contrary to the situation in dimension $$d \ge 2$$ d 2 described recently in König (Bull Lond Math Soc 55(4):2070–2075, 2023). This leads us to conjecture that for $$d = 1$$ d = 1 , $${\mathcal {Q}}(f)$$ Q ( f ) has no minimizer on $$\dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}$$ H ˙ s ( R d ) \ B , which again would be contrary to the situation in $$d \ge 2$$ d 2 . As a complement of the above, we study a family of test functions which interpolates between one and two Talenti bubbles, for every $$d \ge 1$$ d 1 . For $$d \ge 2$$ d 2 , this family yields an alternative proof of the main result of König (Bull Lond Math Soc 55(4):2070–2075, 2023). For $$d =1$$ d = 1 we make some numerical observations which support the conjecture stated above.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3