Abstract
AbstractIn this paper, for $$d \ge 1$$
d
≥
1
and $$s \in (0,\frac{d}{2})$$
s
∈
(
0
,
d
2
)
, we study the Bianchi–Egnell quotient $$\begin{aligned} {\mathcal {Q}}(f) = \inf _{f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}} \frac{\Vert (-\Delta )^{s/2} f\Vert _{L^2({\mathbb {R}}^d)}^2 - S_{d,s} \Vert f\Vert _{L^{\frac{2d}{d-2s}}(\mathbb R^d)}^2}{\text {dist}_{\dot{H}^s({\mathbb {R}}^d)}(f, {\mathcal {B}})^2}, \qquad f \in \dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}, \end{aligned}$$
Q
(
f
)
=
inf
f
∈
H
˙
s
(
R
d
)
\
B
‖
(
-
Δ
)
s
/
2
f
‖
L
2
(
R
d
)
2
-
S
d
,
s
‖
f
‖
L
2
d
d
-
2
s
(
R
d
)
2
dist
H
˙
s
(
R
d
)
(
f
,
B
)
2
,
f
∈
H
˙
s
(
R
d
)
\
B
,
where $$S_{d,s}$$
S
d
,
s
is the best Sobolev constant and $${\mathcal {B}}$$
B
is the manifold of Sobolev optimizers. By a fine asymptotic analysis, we prove that when $$d = 1$$
d
=
1
, there is a neighborhood of $${\mathcal {B}}$$
B
on which the quotient $${\mathcal {Q}}(f)$$
Q
(
f
)
is larger than the lowest value attainable by sequences converging to $${\mathcal {B}}$$
B
. This behavior is surprising because it is contrary to the situation in dimension $$d \ge 2$$
d
≥
2
described recently in König (Bull Lond Math Soc 55(4):2070–2075, 2023). This leads us to conjecture that for $$d = 1$$
d
=
1
, $${\mathcal {Q}}(f)$$
Q
(
f
)
has no minimizer on $$\dot{H}^s({\mathbb {R}}^d) \setminus {\mathcal {B}}$$
H
˙
s
(
R
d
)
\
B
, which again would be contrary to the situation in $$d \ge 2$$
d
≥
2
. As a complement of the above, we study a family of test functions which interpolates between one and two Talenti bubbles, for every $$d \ge 1$$
d
≥
1
. For $$d \ge 2$$
d
≥
2
, this family yields an alternative proof of the main result of König (Bull Lond Math Soc 55(4):2070–2075, 2023). For $$d =1$$
d
=
1
we make some numerical observations which support the conjecture stated above.
Funder
Johann Wolfgang Goethe-Universität, Frankfurt am Main
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. 10th printing, with corrections. A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1972)
2. Aubin, T.: Problèmes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)
3. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991)
4. Bianchini, C., Croce, G., Henrot, A.: On the quantitative isoperimetric inequality in the plane. ESAIM Control Optim. Calc. Var. 23(2), 517–549 (2017)
5. Chen, S., Frank, R.L., Weth, T.: Remainder terms in the fractional Sobolev inequality. Indiana Univ. Math. J. 62(4), 1381–1397 (2013)