Geometric convergence results for closed minimal surfaces via bubbling analysis

Author:

Ambrozio Lucas,Buzano Reto,Carlotto Alessandro,Sharp Ben

Abstract

AbstractWe present some geometric applications, of global character, of the bubbling analysis developed by Buzano and Sharp for closed minimal surfaces, obtaining smooth multiplicity one convergence results under upper bounds on the Morse index and suitable lower bounds on either the genus or the area. For instance, we show that given any Riemannian metric of positive scalar curvature on the three-dimensional sphere the class of embedded minimal surfaces of index one and genus $$\gamma $$ γ is sequentially compact for any $$\gamma \ge 1$$ γ 1 . Furthemore, we give a quantitative description of how the genus drops as a sequence of minimal surfaces converges smoothly, with mutiplicity $$m\ge 1$$ m 1 , away from finitely many points where curvature concentration may happen. This result exploits a sharp estimate on the multiplicity of convergence in terms of the number of ends of the bubbles that appear in the process.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces;Duke Mathematical Journal;2023-08-15

2. Hierarchy structures in finite index CMC surfaces;Advances in Calculus of Variations;2023-07-26

3. Geometry of CMC surfaces of finite index;Advanced Nonlinear Studies;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3