Abstract
AbstractWe study the limit behaviour of sequences of non-convex, vectorial, random integral functionals, defined on$$W^{1,1}$$W1,1, whose integrands are ergodic and satisfy degenerate linear growth conditions. The latter involve suitable random, scale-dependent weight-functions. Under minimal assumptions on the integrand and on the weight-functions, we show that the sequence of functionals homogenizes to a non-degenerate deterministic functional defined onBV.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference27 articles.
1. Abddaimi, Y., Michaille, G., Licht, C.: Stochastic Homogenization for an integral functional of a quasiconvex function with linear growth. Asymptot. Anal. 15, 183–202 (1997)
2. Akcoglu, M.A., Krengel, U.: Ergodic theorems for superadditive processes. J. Reine Ang. Math. 323, 53–67 (1981)
3. Ambrosio, L., Dal Maso, G.: On the relaxation in $$BV(\Omega ; {\mathbb{R}}^m)$$ of quasi-convex integrals. J. Funct. Anal. 109, 76–97 (1992)
4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)
5. Bouchittè, G., Fonseca, I., Mascarenhas, L.: A global method for relaxation. Arch. Ration. Mech. Anal. 145, 51–98 (1998)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献