Abstract
AbstractFor a bounded open set $$\Omega \subset {\mathbb {R}}^3$$
Ω
⊂
R
3
we consider the minimization problem $$\begin{aligned} S(a+\epsilon V) = \inf _{0\not \equiv u\in H^1_0(\Omega )} \frac{\int _\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int _\Omega u^6\,dx)^{1/3}} \end{aligned}$$
S
(
a
+
ϵ
V
)
=
inf
0
≢
u
∈
H
0
1
(
Ω
)
∫
Ω
(
|
∇
u
|
2
+
(
a
+
ϵ
V
)
|
u
|
2
)
d
x
(
∫
Ω
u
6
d
x
)
1
/
3
involving the critical Sobolev exponent. The function a is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on a and V we compute the asymptotics of $$S(a+\epsilon V)-S$$
S
(
a
+
ϵ
V
)
-
S
as $$\epsilon \rightarrow 0+$$
ϵ
→
0
+
, where S is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to a and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $$S(a+\epsilon V)<S$$
S
(
a
+
ϵ
V
)
<
S
for all sufficiently small $$\epsilon >0$$
ϵ
>
0
.
Funder
Directorate for Mathematical and Physical Sciences
Studienstiftung des Deutschen Volkes
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference32 articles.
1. Amar, M., Garroni, A.: $$\Gamma $$-convergence of concentration problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(1), 151–179 (2003)
2. Atkinson, F.V., Peletier, L.A.: Elliptic equations with nearly critical growth. J. Differ. Equ. 70(3), 349–365 (1987)
3. Aubin, T.: Problèmes isoperimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)
4. Bahri, A.: Critical Points at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics Series, vol. 182. Longman Scientific & Technical, Harlow (1989)
5. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41(3), 253–294 (1988)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献