Nonlocal approximation of nonlinear diffusion equations

Author:

Carrillo José Antonio,Esposito AntonioORCID,Wu Jeremy Sheung-Him

Abstract

AbstractWe show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions as the limit of a (sub)sequence of weak measure solutions by using the Jordan-Kinderlehrer-Otto scheme from the context of 2-Wasserstein gradient flows. Our strategy allows to cover the porous medium equation, for the general slow diffusion case, extending previous results in the literature. As a byproduct of our analysis, we provide a qualitative particle approximation.

Funder

HORIZON EUROPE European Research Council

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

2. Barenblatt, G.: On one class of solutions of the one-dimensional problem of non-stationary filtration of a gas in a porous medium. Prikl. Mat. i Mekh. 17, 739–742 (1953)

3. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

4. Boi, S., Capasso, V., Morale, D.: Modeling the aggregative behavior of ants of the species polyergus rufescens. volume 1, pp. 163–176. 2000. Spatial Heterogeneity in Ecological Models (Alcalá de Henares, 1998)

5. Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $$u_{t}-\Delta \varphi (u)=0$$. J. Math. Pures Appl. (9) 58(2), 153–163 (1979)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competing effects in fourth‐order aggregation–diffusion equations;Proceedings of the London Mathematical Society;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3