Abstract
AbstractWe revisit Yudovich’s well-posedness result for the 2-dimensional Euler equations for an inviscid incompressible fluid on either a sufficiently regular (not necessarily bounded) open set $$\Omega \subset \mathbb {R}^2$$
Ω
⊂
R
2
or on the torus $$\Omega =\mathbb {T}^2$$
Ω
=
T
2
. We construct global-in-time weak solutions with vorticity in $$L^1\cap L^p_{ul}$$
L
1
∩
L
ul
p
and in $$L^1\cap Y^\Theta _{ul}$$
L
1
∩
Y
ul
Θ
, where $$L^p_{ul}$$
L
ul
p
and $$Y^\Theta _{ul}$$
Y
ul
Θ
are suitable uniformly-localized versions of the Lebesgue space $$L^p$$
L
p
and of the Yudovich space $$Y^\Theta $$
Y
Θ
respectively, with no condition at infinity for the growth function $$\Theta $$
Θ
. We also provide an explicit modulus of continuity for the velocity depending on the growth function $$\Theta $$
Θ
. We prove uniqueness of weak solutions in $$L^1\cap Y^\Theta _{ul}$$
L
1
∩
Y
ul
Θ
under the assumption that $$\Theta $$
Θ
grows moderately at infinity. In contrast to Yudovich’s energy method, we employ a Lagrangian strategy to show uniqueness. Our entire argument relies on elementary real-variable techniques, with no use of either Sobolev spaces, Calderón–Zygmund theory or Littlewood–Paley decomposition, and actually applies not only to the Biot–Savart law, but also to more general operators whose kernels obey some natural structural assumptions.
Funder
European Research Council
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Ambrose, D.M., Kelliher, J.P., Filho, L., Milton, C., Lopes, N., Helena, J.: Serfati solutions to the 2D Euler equations on exterior domains. J. Differ. Equ. 259(9), 4509–4560 (2015)
2. Ambrosio, L., Bernard, P.: Uniqueness of signed measures solving the continuity equation for Osgood vector fields. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(3), 237–245 (2008)
3. Ambrosio, L., Crippa, G.: Continuity equations and ODE flows with non-smooth velocity. Proc. R. Soc. Edinb. Sect. A 144(6), 1191–1244 (2014)
4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)
5. Bernicot, F., Hmidi, T.: On the global well-posedness for Euler equations with unbounded vorticity. Dyn. Part. Differ. Equ. 12(2), 127–155 (2015)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献