Abstract
AbstractIn this paper, we study the uniqueness of weak solutions of the heat flow of half-harmonic maps, which was first introduced by Wettstein as a half-Laplacian heat flow and recently studied by Struwe using more classical techniques. On top of its similarity with the two dimensional harmonic map flow, this geometric gradient flow is of interest due to its links with free boundary minimal surfaces and the Plateau problem, leading Struwe to propose the name Plateau flow, which we adopt throughout. We obtain uniqueness of weak solutions of this flow under a natural condition on the energy, which answers positively a question raised by Struwe.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC