Ricci flow of warped Berger metrics on $${\mathbb {R}}^{4}$$

Author:

Di Giovanni Francesco

Abstract

AbstractWe study the Ricci flow on $${\mathbb {R}}^{4}$$ R 4 starting at an SU(2)-cohomogeneity 1 metric $$g_{0}$$ g 0 whose restriction to any hypersphere is a Berger metric. We prove that if $$g_{0}$$ g 0 has no necks and is bounded by a cylinder, then the solution develops a global Type-II singularity and converges to the Bryant soliton when suitably dilated at the origin. This is the first example in dimension $$n > 3$$ n > 3 of a non-rotationally symmetric Type-II flow converging to a rotationally symmetric singularity model. Next, we show that if instead $$g_{0}$$ g 0 has no necks, its curvature decays and the Hopf fibres are not collapsed, then the solution is immortal. Finally, we prove that if the flow is Type-I, then there exist minimal 3-spheres for times close to the maximal time.

Funder

University College London

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference45 articles.

1. Angenent, S., Isenberg, J., Knopf, D.: Degenerate neckpinches in Ricci flow. J. Reine Angew. Math. 709, 81–117 (2015)

2. Angenent, S., Knopf, D.: An example of neckpinching for Ricci Flow on $${S}^{n+1}$$. Math. Res. Lett. 11, 07 (2004)

3. Appleton, A.: A family of non-collapsed steady Ricci solitons in even dimensions greater or equal to four. arXiv:1708.00161, (2018)

4. Appleton, A.: Eguchi-Hanson singularities in U(2)-invariant Ricci flow. arXiv:1903.09936 , (2019)

5. Bando, S.: Real analyticity of solutions of Hamilton’s equation. Math. Z. 195(1), 93–97 (1987)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence of Ricci flow solutions to Taub-NUT;Communications in Partial Differential Equations;2021-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3