Bootstrapping globally optimal variational calculus solutions

Author:

Chirikjian Gregory S.ORCID

Abstract

AbstractWhereas in a coordinate-dependent setting the Euler–Lagrange equations establish necessary conditions for solving variational problems in which both the integrands of functionals and the resulting paths are assumed to be sufficiently smooth, uniqueness and global optimality are generally hard to prove in the absence of convexity conditions, and often times they may not even exist. This is also true for variational problems on Lie groups, with the Euler–Poincaré equation establishing necessary conditions. The difficulties compound when integrands and/or the optimal paths are not sufficiently regular, since in this case the classical necessary conditions no longer apply. This article therefore reviews several nonstandard cases where unique globally optimal solutions can be guaranteed, and establishes a “bootstrapping” process to build new globally optimal variational solutions on larger spaces from existing ones on smaller spaces. Surprisingly, it is possible to prove global optimality in some nonconvex cases where even the regularity conditions required for classical necessary conditions do not hold. This general theory is then applied to several topics such as optimal framing of curves in three-dimensional Euclidean space, optimal motion interpolation, and optimal reparametrization of video sequences to compare salient actions.

Funder

National Research Foundation Singapore

Ministry of Education

Singapore Maritime Institute

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference58 articles.

1. Brechtken-Manderscheid, U.: Introduction to the Calculus of Variations. Chapman and Hall, New York (1991)

2. Ewing, G.M.: Calculus of Variations with Applications. W.W. Norton and Co., New York (1969)

3. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, vol. 9. North-Holland, Amsterdam (1975)

4. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, vol. 319. Springer, New York (2013)

5. Gruver, W.A., Sachs, E.: Algorithmic Methods in Optimal Control. Pitman Publishing Ltd, Boston (1980)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3