Author:
Don Sebastiano,Magnani Valentino
Abstract
AbstractWe prove an integral formula for the spherical measure of hypersurfaces in equiregular sub-Riemannian manifolds. Among various technical tools, we establish a general criterion for the uniform convergence of parametrized sub-Riemannian distances, and local uniform asymptotics for the diameter of small metric balls.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Academy of Finland
European Research Council
Università di Pisa
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference53 articles.
1. Agrachev, A., Barilari, D., Boscain, U.: A comprehensive introduction to sub-Riemannian geometry. In: Cambridge Studies in Advanced Mathematics, vol. 181. Cambridge University Press, Cambridge (2020). From the Hamiltonian viewpoint, With an appendix by Igor Zelenko
2. Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159(1), 51–67 (2001)
3. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. vol. 10, pp. 111–128 (2002). Calculus of variations, nonsmooth analysis and related topics
4. Ambrosio, L., Ghezzi, R., Magnani, V.: BV functions and sets of finite perimeter in sub-Riemannian manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(3), 489–517 (2015)
5. Antonelli, G., Le Donne, E., Nicolussi Golo, S.: Lipschitz Carnot-Carathéodory structures and their limits. J. Dyn. Control Syst. 29, 805 (2022)