Local uniqueness of ground states for the generalized Choquard equation

Author:

Georgiev VladimirORCID,Tarulli Mirko,Venkov George

Abstract

AbstractWe consider the generalized Choquard equation of the type $$\begin{aligned} -\Delta Q + Q = I(|Q|^p)|Q|^{p-2} Q, \end{aligned}$$ - Δ Q + Q = I ( | Q | p ) | Q | p - 2 Q , for $$3\le n\le 5$$ 3 n 5 , with $$Q \in H^1_{rad}(\mathbb {R}^n),$$ Q H rad 1 ( R n ) , where the operator I is the classical Riesz potential defined by $$I(f)(x) =(-\Delta )^{-1}f(x)$$ I ( f ) ( x ) = ( - Δ ) - 1 f ( x ) and the exponent $$p \in (2,1+4/(n-2))$$ p ( 2 , 1 + 4 / ( n - 2 ) ) is energy subcritical. We consider Weinstein-type functional restricted to rays passing through the ground state. The corresponding real valued function of the path parameter has an appropriate analytic extension. We use the properties of this analytic extension in order to show local uniqueness of ground state solutions. The uniqueness of the ground state solutions for the case $$p=2$$ p = 2 , i.e. for the case of Hartree–Choquard, is well known. The main difficulty for the case $$p > 2$$ p > 2 is connected with a possible lack of control on the $$L^p$$ L p norm of the ground states as well on the lack of Sturm’s comparison argument.

Funder

Università di Pisa

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Chang, S.-M., Gustafson, S., Nakanishi, K., Tsai, T.-P.: Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39(4), 1070–1111 (2008)

2. Cuccagna, S., Tarulli, M.: On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential. J. Math. Anal. Appl. 436(2), 1332–1368 (2016)

3. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vols. I, II. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman

4. Genev, H., Venkov, G.: Soliton and blow-up solutions to the time-dependent Schrödinger–Hartree equation. Discrete Contin. Dyn. Syst. Ser. S 5(5), 903–923 (2012)

5. Georgiev, V., Stefanov, A.: On the classification of the spectrally stable standing waves of the Hartree problem. Phys. D 370, 29–39 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3