Abstract
AbstractWe show that for an open and dense set ofnon-reversibleFinsler metrics on a sphere$$S^n$$Snof odd dimension$$n=2m-1\ge 3$$n=2m-1≥3there is a second closed geodesic with Morse index$$\le 4(m+2)(m-1)+2.$$≤4(m+2)(m-1)+2.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference23 articles.
1. Abreu, M., Gutt, J., Kang, J., Macarini, L.: Two closed orbits for non-degenerate Reeb flows. Math. Proc. Cambridge Phil. Soc. 170, 625–660 (2021)
2. Bangert, V., Long, Y.: The existence of two closed geodesics on every Finsler $$2$$-sphere. Math. Ann. 346, 335–366 (2010)
3. Chas, M., Sullivan, D.: String topology, Preprint (1999). arXiv:math/9911159
4. Duan, H., Long, Y.: Multiple closed geodesics on bumpy Finsler spheres. J. Diff. Eq. 233, 221–240 (2007)
5. Duan, H., Long, Y., Wang, W.: Two closed geodesics on compact simply-connected bumpy Finsler manifolds. J. Differ. Geom. 104, 275–289 (2015)