Abstract
AbstractWe provide a Maupertuis-type principle for the following system of ODE, of interest in special relativity: $$\begin{aligned} \frac{\textrm{d}}{{\textrm{d}}t}\left( \frac{m\dot{x}}{\sqrt{1-|\dot{x}|^2/c^2}}\right) =\nabla V(x),\qquad x\in \Omega \subset \mathbb {R}^n, \end{aligned}$$
d
d
t
m
x
˙
1
-
|
x
˙
|
2
/
c
2
=
∇
V
(
x
)
,
x
∈
Ω
⊂
R
n
,
where $$m, c > 0$$
m
,
c
>
0
and $$V: \Omega \rightarrow \mathbb {R}$$
V
:
Ω
→
R
is a function of class $$C^1$$
C
1
. As an application, we prove the existence of multiple periodic solutions with prescribed energy for a relativistic N-centre type problem in the plane.
Funder
Università degli Studi di Torino
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis