Abstract
AbstractIn this paper, we study two related features of the regularity of the weak solutions to the following strongly degenerate parabolic equation $$\begin{aligned} u_t-\textrm{div}\left( \left( \left| Du\right| -1\right) _+^{p-1}\frac{Du}{\left| Du\right| }\right) =f\qquad \text{ in } \Omega _T =\Omega \times (0,T), \end{aligned}$$
u
t
-
div
D
u
-
1
+
p
-
1
Du
D
u
=
f
in
Ω
T
=
Ω
×
(
0
,
T
)
,
where $$\Omega $$
Ω
is a bounded domain in $$\mathbb {R}^{n}$$
R
n
for $$n\ge 2$$
n
≥
2
, $$p\ge \text {and}\, T>0$$
p
≥
and
T
>
0
. We prove the higher differentiability of a nonlinear function of the spatial gradient of the weak solutions, assuming only that $$f\in L^{2}_{\textrm{loc}}\left( \Omega _T\right) $$
f
∈
L
loc
2
Ω
T
. This allows us to establish the higher integrability of the spatial gradient under the same minimal requirement on the datum f.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Federico II
Università Politecnica delle Marche
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献