Author:
Garain Prashanta,Pchelintsev Valerii,Ukhlov Alexander
Abstract
AbstractIn the article we study the Neumann (p, q)-eigenvalue problems in bounded Hölder $$\gamma $$
γ
-singular domains $$\Omega _{\gamma }\subset {\mathbb {R}}^n$$
Ω
γ
⊂
R
n
. In the case $$1<p<\infty $$
1
<
p
<
∞
and $$1<q<p^{*}_{\gamma }$$
1
<
q
<
p
γ
∗
we prove solvability of this eigenvalue problem and existence of the minimizer of the associated variational problem. In addition, we establish some regularity results of the eigenfunctions and some estimates of (p, q)-eigenvalues.
Funder
Russian Science Foundation
Ben-Gurion University
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Anane, A., Tsouli, N.: On the second eigenvalue of the p-Laplacian, in nonlinear partial differential equations (Fés, 1994). Pitman Res. Notes Math. Ser. 343, 1–9 (1996)
2. Anane, A.: Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305(16), 725–728 (1987)
3. Ciarlet, P.G.: Linear and nonlinear functional analysis with applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013)
4. Croce, G., Henrot, A., Pisante, G.: Corrigendum to “An isoperimetric inequality for a nonlinear eigenvalue problem’’ [Ann. I. H. Poincaré - AN 29(1) (2012) 21–34]. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(2), 485–487 (2015)
5. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(4), 493–516 (1998)