Abstract
AbstractGiven a constant $$k>1$$
k
>
1
, let Z be the family of round spheres of radius $${{\,\mathrm{artanh}\,}}(k^{-1})$$
artanh
(
k
-
1
)
in the hyperbolic space $${\mathbb {H}}^3$$
H
3
, so that any sphere in Z has mean curvature k. We prove a crucial nondegeneracy result involving the manifold Z. As an application, we provide sufficient conditions on a prescribed function $$\phi $$
ϕ
on $${\mathbb {H}}^3$$
H
3
, which ensure the existence of a $$\mathcal{C}^1$$
C
1
-curve, parametrized by $$\varepsilon \approx 0$$
ε
≈
0
, of embedded spheres in $${\mathbb {H}}^3$$
H
3
having mean curvature $$k +\varepsilon \phi $$
k
+
ε
ϕ
at each point.
Funder
Università degli Studi di Udine
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference23 articles.
1. Alencar, H., Rosenberg, H.: Some remarks on the existence of hypersurfaces of constant mean curvature with a given boundary, or asymptotic boundary, in hyperbolic space. Bull. Sci. Math. 121(1), 61–69 (1997)
2. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on $${\mathbb{R}}^{n}$$, Progress in Mathematics, 240. Birkhäuser Verlag, Basel (2006)
3. Anderson, M.T.: Conformal immersions of prescribed mean curvature in $${\mathbb{R}}^{3}$$. Nonlinear Anal. 114, 142–157 (2015)
4. Aubin, T.: Nonlinear Analysis on Manifolds. Monge–Ampère Equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer, New York (1982)
5. Brezis, H., Coron, J.-M.: Convergence of solutions of $$H$$-systems or how to blow bubbles. Arch. Ration. Mech. Anal. 89(1), 21–56 (1985)