Author:
Bernard Yann,Rivière Tristan
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference21 articles.
1. Adams, R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)
2. Bernard, Y., Rivière, T.: Energy quantization for Willmore surfaces and applications. Ann. Math. 180, 87–136 (2014)
3. Bernard, Y., Rivière, T.: Singularity removability at branch points for Willmore surfaces. Pac. J. Math. 265(2), 257–311 (2013)
4. Breuning, P.: Immersions with bounded second fundamental form. J. Geom. Anal. 25, 1344–1386 (2015)
5. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72(3), 247–286 (1993)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Weighted $$\infty $$-Willmore spheres;Nonlinear Differential Equations and Applications NoDEA;2024-04-25
2. Energy Estimates for the Tracefree Curvature of Willmore Surfaces and Applications;Archive for Rational Mechanics and Analysis;2023-01-18
3. Stationary surfaces with boundaries;Annals of Global Analysis and Geometry;2022-05-31
4. The Viscosity Method for Min–Max Free Boundary Minimal Surfaces;Archive for Rational Mechanics and Analysis;2022-03-24
5. Lower Semi-continuity of the Index in the Viscosity Method for Minimal Surfaces;International Mathematics Research Notices;2019-02-07