Abstract
AbstractWe consider a quasi-variational inequality governed by a moving set. We employ the assumption that the movement of the set has a small Lipschitz constant. Under this requirement, we show that the quasi-variational inequality has a unique solution which depends Lipschitz-continuously on the source term. If the data of the problem is (directionally) differentiable, the solution map is directionally differentiable as well. We also study the optimal control of the quasi-variational inequality and provide necessary optimality conditions of strongly stationary type.
Funder
Brandenburgische TU Cottbus-Senftenberg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献