Best constants in Sobolev and Gagliardo–Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations

Author:

Ruzhansky Michael,Tokmagambetov Niyaz,Yessirkegenov Nurgissa

Abstract

AbstractIn this paper the dependence of the best constants in Sobolev and Gagliardo–Nirenberg inequalities on the precise form of the Sobolev space norm is investigated. The analysis is carried out on general graded Lie groups, thus including the cases of $$\mathbb {R}^n$$ R n , Heisenberg, and general stratified Lie groups, in all these cases the results being new. The Sobolev norms may be defined in terms of Rockland operators, i.e. the hypoelliptic homogeneous left-invariant differential operators on the group. The best constants are expressed in the variational form as well as in terms of the ground state solutions of the corresponding nonlinear subelliptic equations. The orders of these equations can be high depending on the Sobolev space order in the Sobolev or Gagliardo–Nirenberg inequalities, or may be fractional. Applications are obtained also to equations with lower order terms given by different hypoelliptic operators. Already in the case of $${\mathbb {R}}^n$$ R n , the obtained results extend the classical relations by Weinstein (Commun Math Phys 87(4):567–576 (1982/1983)) to a wide range of nonlinear elliptic equations of high orders with elliptic low order terms and a wide range of interpolation inequalities of Gagliardo–Nirenberg type. However, the proofs are different from those in Weinstein (Commun Math Phys 87(4):567–576 (1982/1983)) because of the impossibility of using the rearrangement inequalities already in the setting of the Heisenberg group. The considered class of graded groups is the most general class of nilpotent Lie groups where one can still consider hypoelliptic homogeneous invariant differential operators and the corresponding subelliptic differential equations.

Funder

Queen Mary University of London

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3