Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities

Author:

Cingolani SilviaORCID,Gallo MarcoORCID,Tanaka KazunagaORCID

Abstract

AbstractWe prove existence of infinitely many solutions $$u \in H^1_r({\mathbb {R}}^N)$$ u H r 1 ( R N ) for the nonlinear Choquard equation $$\begin{aligned} - {\varDelta } u + \mu u =(I_\alpha *F(u)) f(u) \quad \hbox {in}\ {\mathbb {R}}^N, \end{aligned}$$ - Δ u + μ u = ( I α F ( u ) ) f ( u ) in R N , where $$N\ge 3$$ N 3 , $$\alpha \in (0,N)$$ α ( 0 , N ) , $$I_\alpha (x) := \frac{{\varGamma }(\frac{N-\alpha }{2})}{{\varGamma }(\frac{\alpha }{2}) \pi ^{N/2} 2^\alpha } \frac{1}{|x|^{N- \alpha }}$$ I α ( x ) : = Γ ( N - α 2 ) Γ ( α 2 ) π N / 2 2 α 1 | x | N - α , $$x \in {\mathbb {R}}^N \setminus \{0\}$$ x R N \ { 0 } is the Riesz potential, and F is an almost optimal subcritical nonlinearity, assumed odd or even. We analyze the two cases: $$\mu $$ μ is a fixed positive constant or $$\mu $$ μ is unknown and the $$L^2$$ L 2 -norm of the solution is prescribed, i.e. $$\int _{{\mathbb {R}}^N} |u|^2 =m>0$$ R N | u | 2 = m > 0 . Since the presence of the nonlocality prevents to apply the classical approach, introduced by Berestycki and Lions (Arch Ration Mech Anal 82(4):347–375, 1983), we implement a new construction of multidimensional odd paths, where some estimates for the Riesz potential play an essential role, and we find a nonlocal counterpart of their multiplicity results. In particular we extend the existence results due to Moroz and Van Schaftingen (Trans Am Math Soc 367(9):6557–6579, 2015).

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference57 articles.

1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)

2. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. SN Partial Differ. Equ. Appl. 1(34), 25 (2020)

3. Battaglia, L., Van Schaftingen, J.: Groundstates of the Choquard equations with a sign-changing self-interaction potential. Z. Angew. Math. Phys. 69(86), 16 (2018)

4. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I: existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

5. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations II: existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3