Abstract
AbstractWe prove existence of infinitely many solutions $$u \in H^1_r({\mathbb {R}}^N)$$
u
∈
H
r
1
(
R
N
)
for the nonlinear Choquard equation $$\begin{aligned} - {\varDelta } u + \mu u =(I_\alpha *F(u)) f(u) \quad \hbox {in}\ {\mathbb {R}}^N, \end{aligned}$$
-
Δ
u
+
μ
u
=
(
I
α
∗
F
(
u
)
)
f
(
u
)
in
R
N
,
where $$N\ge 3$$
N
≥
3
, $$\alpha \in (0,N)$$
α
∈
(
0
,
N
)
, $$I_\alpha (x) := \frac{{\varGamma }(\frac{N-\alpha }{2})}{{\varGamma }(\frac{\alpha }{2}) \pi ^{N/2} 2^\alpha } \frac{1}{|x|^{N- \alpha }}$$
I
α
(
x
)
:
=
Γ
(
N
-
α
2
)
Γ
(
α
2
)
π
N
/
2
2
α
1
|
x
|
N
-
α
, $$x \in {\mathbb {R}}^N \setminus \{0\}$$
x
∈
R
N
\
{
0
}
is the Riesz potential, and F is an almost optimal subcritical nonlinearity, assumed odd or even. We analyze the two cases: $$\mu $$
μ
is a fixed positive constant or $$\mu $$
μ
is unknown and the $$L^2$$
L
2
-norm of the solution is prescribed, i.e. $$\int _{{\mathbb {R}}^N} |u|^2 =m>0$$
∫
R
N
|
u
|
2
=
m
>
0
. Since the presence of the nonlocality prevents to apply the classical approach, introduced by Berestycki and Lions (Arch Ration Mech Anal 82(4):347–375, 1983), we implement a new construction of multidimensional odd paths, where some estimates for the Riesz potential play an essential role, and we find a nonlocal counterpart of their multiplicity results. In particular we extend the existence results due to Moroz and Van Schaftingen (Trans Am Math Soc 367(9):6557–6579, 2015).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference57 articles.
1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)
2. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. SN Partial Differ. Equ. Appl. 1(34), 25 (2020)
3. Battaglia, L., Van Schaftingen, J.: Groundstates of the Choquard equations with a sign-changing self-interaction potential. Z. Angew. Math. Phys. 69(86), 16 (2018)
4. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations I: existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)
5. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations II: existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献