Author:
Brasco Lorenzo,Gómez-Castro David,Vázquez Juan Luis
Abstract
AbstractOur aim is to characterize the homogeneous fractional Sobolev–Slobodeckiĭ spaces $$\mathcal {D}^{s,p} (\mathbb {R}^n)$$
D
s
,
p
(
R
n
)
and their embeddings, for $$s \in (0,1]$$
s
∈
(
0
,
1
]
and $$p\ge 1$$
p
≥
1
. They are defined as the completion of the set of smooth and compactly supported test functions with respect to the Gagliardo–Slobodeckiĭ seminorms. For $$s\,p < n$$
s
p
<
n
or $$s = p = n = 1$$
s
=
p
=
n
=
1
we show that $$\mathcal {D}^{s,p}(\mathbb {R}^n)$$
D
s
,
p
(
R
n
)
is isomorphic to a suitable function space, whereas for $$s\,p \ge n$$
s
p
≥
n
it is isomorphic to a space of equivalence classes of functions, differing by an additive constant. As one of our main tools, we present a Morrey–Campanato inequality where the Gagliardo–Slobodeckiĭ seminorm controls from above a suitable Campanato seminorm.
Funder
Università degli Studi di Ferrara
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference33 articles.
1. Adams, R., Fournier, J.: Sobolev Spaces (Pure and Applied Mathematics), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)
2. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)
3. Bergh, J., Löfström, J.: Interpolation Spaces. An introduction: Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)
4. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan’s 60th Birthday, pp. 439–455. IOS Press, Amsterdam (2001)
5. Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55, Paper No. 23, 32 pp (2016)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献