Revisiting the pathogenic mechanism of the GJB1 5’ UTR c.-103C > T mutation causing CMTX1

Author:

Grosz Bianca R.ORCID,Svaren JohnORCID,Perez-Siles GonzaloORCID,Nicholson Garth A.ORCID,Kennerson Marina L.ORCID

Abstract

AbstractThe second most common form of Charcot-Marie-Tooth neuropathy (CMT), X-linked CMT type X1 (CMTX1), is caused by coding and non-coding mutations in the gap junction beta 1 (GJB1) gene. The non-coding GJB1 c.-103C > T mutation (NM_000166.5) has been reported to cause CMTX1 in multiple families. This study assessed the internal ribosomal entry site (IRES) activity previously reported for the rat Gjb1 P2 5’ untranslated region (UTR). Using a bicistronic assay and transfecting RT4 Schwann cells, IRES activity of the human GJB1 P2 5’ UTR was compared to the GJB1 P2 5’ UTR containing either the c.-103C > T mutation or the non-pathogenic c.-102G > A variant. No differences in GJB1 P2 5’ UTR IRES activity were observed between the negative control, the wild-type P2 5’ UTR, the c.-103C > T 5’ UTR or the c.-102G > A 5’ UTR, irrespective of the GJB1 intron being present (p = .429 with intron, and p = .865 without). A theoretical c.-131A > G variant was predicted to result in the same RNA secondary structure as the GJB1 c.-103C > T P2 5’ UTR. However, no significant difference was observed between expression from the wild-type GJB1 P2 5’ UTR and the GJB1 c.-131A > G variant (p = .688). Deletion of the conserved region surrounding the c.-103C > T mutation (c.-108_-103del) resulted in significantly higher expression than the c.-103C > T mutation alone (p = .019), suggesting that the conserved c.-108_-103 region was not essential for translation. The reporter assays in this study do not recapitulate the previously reported GJB1 IRES activity and suggest an alternate pathogenic mechanism for the c.-103C > T CMTX1 non-coding mutation.

Funder

Department of Health, Australian Government

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Genetics(clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3