Abstract
AbstractWe consider the SQG equation with dissipation given by a fractional Laplacian of order $$\alpha <\frac{1}{2}$$
α
<
1
2
. We introduce a notion of suitable weak solution, which exists for every $$L^2$$
L
2
initial datum, and we prove that for such solution the singular set is contained in a compact set in spacetime of Hausdorff dimension at most $$\frac{1}{2\alpha } \left( \frac{1+\alpha }{\alpha } (1-2\alpha ) + 2\right) $$
1
2
α
1
+
α
α
(
1
-
2
α
)
+
2
.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,General Physics and Astronomy,Mathematical Physics,Analysis
Reference35 articles.
1. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72(9), 1809–1874 (2019)
2. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)
3. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)
4. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)
5. Colombo, M., Haffter, S.: Global regularity for the nonlinear wave equation with slightly supercritical power (2019). arXiv:1911.0259
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献