The Case Against Smooth Null Infinity III: Early-Time Asymptotics for Higher $$\ell $$-Modes of Linear Waves on a Schwarzschild Background

Author:

Kehrberger Leonhard M. A.ORCID

Abstract

AbstractIn this paper, we derive the early-time asymptotics for fixed-frequency solutions $$\phi _\ell $$ ϕ to the wave equation $$\Box _g \phi _\ell =0$$ g ϕ = 0 on a fixed Schwarzschild background ($$M>0$$ M > 0 ) arising from the no incoming radiation condition on $${\mathscr {I}}^-$$ I - and polynomially decaying data, $$r\phi _\ell \sim t^{-1}$$ r ϕ t - 1 as $$t\rightarrow -\infty $$ t - , on either a timelike boundary of constant area radius $$r>2M$$ r > 2 M (I) or an ingoing null hypersurface (II). In case (I), we show that the asymptotic expansion of $$\partial _v(r\phi _\ell )$$ v ( r ϕ ) along outgoing null hypersurfaces near spacelike infinity $$i^0$$ i 0 contains logarithmic terms at order $$r^{-3-\ell }\log r$$ r - 3 - log r . In contrast, in case (II), we obtain that the asymptotic expansion of $$\partial _v(r\phi _\ell )$$ v ( r ϕ ) near spacelike infinity $$i^0$$ i 0 contains logarithmic terms already at order $$r^{-3}\log r$$ r - 3 log r (unless $$\ell =1$$ = 1 ). These results suggest an alternative approach to the study of late-time asymptotics near future timelike infinity $$i^+$$ i + that does not assume conformally smooth or compactly supported Cauchy data: In case (I), our results indicate a logarithmically modified Price’s law for each $$\ell $$ -mode. On the other hand, the data of case (II) lead to much stronger deviations from Price’s law. In particular, we conjecture that compactly supported scattering data on $${\mathscr {H}}^-$$ H - and $${\mathscr {I}}^-$$ I - lead to solutions that exhibit the same late-time asymptotics on $${\mathscr {I}}^+$$ I + for each $$\ell $$ : $$r\phi _\ell |_{{\mathscr {I}}^+}\sim u^{-2}$$ r ϕ | I + u - 2 as $$u\rightarrow \infty $$ u .

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,General Physics and Astronomy,Mathematical Physics,Analysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The case against smooth null infinity IV: Linearized gravity around Schwarzschild—an overview;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-01-15

2. At the interface of asymptotics, conformal methods and analysis in general relativity;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-01-15

3. Phase space renormalization and finite BMS charges in six dimensions;Journal of High Energy Physics;2023-11-07

4. Late-time asymptotics for geometric wave equations with inverse-square potentials;Journal of Functional Analysis;2023-10

5. Peeling for tensorial wave equations on Schwarzschild spacetime;Reviews in Mathematical Physics;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3