ERT investigation of mud volcanoes: detection of mud fluid migration pathways from 2D and 3D synthetic modelling

Author:

Torrese P.

Abstract

AbstractMud volcanoes are geological structures observed throughout the world that arise from the upwelling of deep fluids along discontinuities in the subsoil. The detection of mud fluid migration pathways can be challenging, even when using Electrical Resistivity Tomography (ERT) as detectability issues may arise from complex geological settings. This paper presents new results from 2D and 3D ERT synthetic modelling for the investigation of the shallow, internal structure of terrestrial mud volcanoes. This study revealed the internal structure of the ‘Cenerone-Pineto’ mud volcano (Central Italy) and provided further clues as to its internal structure. The main results of the study are: the presence of a mud chamber, which represents the last phase of mud accumulation before final emission, not located beneath the crater but laterally offset, as well as the presence of a narrow, shallow feeder channel; these findings represent evidence of a much more complex structure than one would expect. This means that the mud volcano is not supplied with mud fluids directly from below as would be the case with an uprising of deep fluid along a near-vertical open fracture and that the shallow mud fluid reservoir is not correlated to the distribution of any mud volcano observed on the surface. Findings from this study are consistent with the observed structural features already noted in ERT and seismic field data collected at the ‘Cenerone-Pineto’ mud volcano and may be helpful in explaining the mechanisms and processes involved in mud volcanism in similar geological settings.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geophysics,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3