Application of seismic refraction and MASW methods for investigating the Spillway Fault trace along the western side of the Aswan High Dam, Egypt

Author:

Hamed Ahmed,Fat-Helbary Raafat El-Shafie,Mohamed Abdel-Monem,El-Faragawy Karrar Omar,Gaber Ahmed Abd El,Meneisy Ahmed M.ORCID

Abstract

AbstractAn earthquake of local magnitude ML = 4.6 occurred on November 7, 2010, 4.5 km northwest of the Aswan High Dam on the Spillway Fault. In the Aswan metropolitan region this earthquake was felt intensely. As no surface rupture was found, the focal mechanism and the distribution of seismic activity was one of the tools used for finding fault dimensions. The composite fault-plane solutions for the observed events on the Spillway Fault showed a left lateral strike-slip faulting with normal-fault component striking NNW-SSE. Also, remote sensing techniques were applied for the detection and identification of the geomorphology and geometry of the Spillway Fault. In this research, sub-surface layers and structures are delineated utilizing near-surface seismic techniques. Furthermore, the area’s supposed path and position of the Spillway Fault are also investigated. Two active seismic techniques, Seismic Refraction and Multi-Channel Analysis of Surface Waves (MASW), are utilized for recording near-surface seismic wave data at 9 sites. The seismic refraction profiles are conducted as a 2D cross-section on the trace of the detected Spillway Fault in the study area to evaluate the maximum depth of penetration of the P-wave for fault investigation. The constructed 2D seismic and structural sections from P-wave results show that the obtained average depth of about 30 m. In addition, the estimated P-wave velocities extend from 600 m/s to over 6500 m/s. Some lateral variation in the seismic wave velocities in all layers may represent fault zones. Moreover, the 1D MASW technique is conducted to estimate the velocities of the shear wave for the upper 30 m (Vs30) to provide the site classes and soil characteristics along both sides of the detected Spillway Fault trace in the study area. The calculated Vs30 values emphasized the idea of the existence of a normal dip-slip fault trace which divides the study area into two different lithological parts. The first part is located on the eastern side and characterized by almost class B (hard rock, according to NEHRP classification), while the other part is located to the west, and shows almost class type C (denoted as dense soil and soft rock soil).

Funder

Aswan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3