Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data

Author:

Porkoláb KristófORCID,Broerse Taco,Kenyeres Ambrus,Békési Eszter,Tóth Sándor,Magyar Bálint,Wesztergom Viktor

Abstract

AbstractThe Pannonian basin is an extensional back-arc basin that has undergone neotectonic inversion and is currently shortening. The understanding and quantification of present-day deformation processes during this inversion are still incomplete. To this end, we investigate the active deformation of the Circum-Pannonian region via the interpolation of GNSS-derived velocity field and the derivation of the strain rate fields. For the interpolation of the velocity field, we use ordinary kriging, a strochastic interpolation method. Our results show that estimating a strain rate field that is virtually free of short-wavelength noise requires the scaling of the velocity uncertainties, i.e. assuming a minimum standard deviation of 1 mm/yr in our case. The deformation of the Circum-Pannonian region is defined by the 2–3 mm/yr, NNE-directed motion of the Dinarides, and by the 0.5–1.5 mm/yr, WSW to SSW directed motion of the eastern areas (European foreland, East Carpathians, South Carpathians, Transylvanian basin). These opposite-sense motions define a large-scale, on average NE-SW shortening and transpression-type deformation in the Dinarides as well as in the Pannonian basin, while the East and South Carpathians undergo regional N–S extension. Neotectonic structures generally show good agreement with the strain rate field, for example in the Dinarides, Eastern Alps, or in the western Pannonian basin. However, the presence of fault-parallel shortening or biaxial shortening along sinistral neotectonic structures in the central and eastern Pannonian basin show some discrepancy between current geodetic and observed neotectonic deformation. The vertical velocity field shows dominantly 100 and 1000 km wavelength signals, the former is probably related to the response of the Pannonian lithosphere-asthenosphere system to neotectonic basin inversion, while latter can possibly be explained by far-field subsidence patterns induced by the mantle response to melting of the Fennoscandian ice sheet during the current interglacial period.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Institute of Earth Physics and Space Science

Publisher

Springer Science and Business Media LLC

Subject

Geology,Geophysics,Building and Construction

Reference62 articles.

1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131

2. Altamimi Z, Sillard P, Boucher C (2007) CATREF software: combination and analysis of terrestrial reference frames: LAREG Technical, Institut Géographique National, Paris, France, p 47.

3. Araszkiewicz A, Figurski M, Jarosiński M (2016) Erroneous GNSS strain rate patterns and their application to investigate the tectonic credibility of GNSS velocities. Acta Geophys 64(5):1412–1429

4. Bada G, Grenerczy G, Tóth L, Horváth F, Stein S, Cloetingh S, Windhoffer G, Fodor L, Pinter N, Fejes I (2007) Motion of adria and ongoing inversion of the Pannonian basin: seismicity, GPS velocities, and stress transfer. Special Papers Geol Soc Am 425:243

5. Balázs A, Matenco L, Magyar I, Horváth F, Cloetingh S (2016) The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics 35(6):1526–1559

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3