Multi-sensor Attitude Estimation using Quaternion Constrained GNSS Ambiguity Resolution and Dynamics-Based Observation Synchronization

Author:

Farkas MártonORCID,Rózsa Szabolcs,Vanek Bálint

Abstract

AbstractRecently, high accuracy and low-cost navigation hardware is becoming increasingly available that can be efficiently used for the control of autonomous vehicles. We present a sensor fusion method providing tightly coupled integration of pseudorange, carrier phase, and Doppler satellite measurements taken at multiple vehicle-mounted GNSS antennas with onboard inertial sensor observations. The key of accurate GNSS position and orientation estimation is the successful integer ambiguity resolution. We propose a method that uses the quaternion states as constraints to improve ambiguity resolution and to increase the accuracy of the GNSS based attitude determination. Generally, the low-cost hardware neither allows a hardware-level time synchronization between the GNSS receivers due to a lack of a common external oscillator nor provides the clock steering function available in geodetic GNSS receivers. The lack of observation synchronization causes several degrees of error in attitude estimation. To eliminate this effect, a dynamics-based solution is presented that synchronizes the observations by taking the dynamics of the moving platform into account. Compared to common external oscillator based sensor setups, our solution allows to increase both the number of rover receivers on the platform and the baselines between them easily, thus it opens up new possibilities in the attitude determination of large vehicles. We validate our approach against a tactical grade inertial navigation system. The results show that our approach using low-cost sensors provides the ambiguity success rate of 100% for the moving baselines, and the positioning and attitude error reached the centimeter and half a degree level, respectively.

Funder

HUN-REN Institute for Computer Science and Control

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3