Abstract
AbstractLet $$\xi _1,\xi _2,\ldots $$
ξ
1
,
ξ
2
,
…
be independent, identically distributed random variables with infinite mean $${\mathbf {E}}[|\xi _1|]=\infty .$$
E
[
|
ξ
1
|
]
=
∞
.
Consider a random walk $$S_n=\xi _1+\cdots +\xi _n$$
S
n
=
ξ
1
+
⋯
+
ξ
n
, a stopping time $$\tau =\min \{n\ge 1: S_n\le 0\}$$
τ
=
min
{
n
≥
1
:
S
n
≤
0
}
and let $$M_\tau =\max _{0\le i\le \tau } S_i$$
M
τ
=
max
0
≤
i
≤
τ
S
i
. We study the asymptotics for $${\mathbf {P}}(M_\tau >x),$$
P
(
M
τ
>
x
)
,
as $$x\rightarrow \infty $$
x
→
∞
.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Management Science and Operations Research,Computer Science Applications
Reference25 articles.
1. Asmussen, S.: Subexponential asymptotics for stochastic processes: extremal behaviour, stationary distributions and first passage probabilities. Ann. Appl. Probab. 8, 354–374 (1998)
2. Asmussen, S., Foss, S., Korshunov, D.: Asymptotics for sums of random variables with local subexponential behaviour. J. Theoret. Probab. 16, 489–518 (2003)
3. Asmussen, S., Kalashnikov, V., Konstantinides, D., Klüppelberg, C., Tsitsiashvili, G.: A local limit theorem for random walk maxima with heavy tails. Stat. Probab. Lett. 56, 399–404 (2002)
4. Caravenna, F., Doney, R.: Local large deviations and the strong renewal theorem. Electron. J. Probab. 24(72), 48 (2019)
5. Bertoin, J., Doney, R.A.: Some asymptotic results for transient random walks. Adv. Appl. Probab. 28, 207–226 (1996)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献