Existence and uniqueness result for a fluid–structure–interaction evolution problem in an unbounded 2D channel

Author:

Patriarca ClaraORCID

Abstract

AbstractIn an unbounded 2D channel, we consider the vertical displacement of a rectangular obstacle in a regime of small flux for the incoming flow field, modelling the interaction between the cross-section of the deck of a suspension bridge and the wind. We prove an existence and uniqueness result for a fluid–structure-interaction evolution problem set in this channel, where at infinity the velocity field of the fluid has aPoiseuille flowprofile. We introduce a suitable definition of weak solutions and we make use of a penalty method. In order to prevent the obstacle from going excessively far from the equilibrium position and colliding with the boundary of the channel, we introduce astrong forcein the differential equation governing the motion of the rigid body and we find a unique global-in-time solution.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Reference33 articles.

1. Al Baba, H., Chemetov, N.V., Necasova, S., Muha, B.: Strong solution in $${L}^{2}$$ framework for fluid-rigid body interaction problem. Mixed case. Topol. Methods Nonlinear Anal. 52, 337–350 (2018)

2. Amick, C.J.: Steady solutions of the Navier–Stokes equations in unbounded channels and pipes. Ann. Sc. Norm. Sup. Pisa 4, 473–513 (1977)

3. Arioli, G., Gazzola, F., Terracini, S.: Minimization properties of Hill’s orbits and applications to some N-body problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18, 617–650 (2000)

4. Bonheure, D., Galdi, G.P., Gazzola, F.: Equilibrium configuration of a rectangular obstacle immersed in a channel flow. C. R. Acad. Sci. Paris 358, 887–896 (2020)

5. Bravin, M.: Energy equality and uniqueness of weak solutions of a “viscous incompressible fluid + rigid body’’ system with Navier slip-with-friction conditions in a 2d bounded domain. J. Math. Fluid Mech. 21, 23 (2019)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3